多特征知识下的食品安全事件实体抽取研究
【目的】从大规模食品安全事件当中抽取食品安全事件实体。【方法】基于已发生的食品安全事件, 结合情报学数据获取、标注和组织的方法, 融合食品安全事件实体的多种分布特征知识, 通过条件随机场模型, 构建食品安全事件语料并从中抽取相应的实体。【局限】在食品安全事件实体抽取过程中所制定的特征模板在领域化迁移上具有一定的局限性。【结果】在已有1500万字经过标注的食品安全事件语料的规模上, 通过统计食品安全事件实体的内部和外部特征, 基于条件随机场机器学习模型, 构建了食品安全实体的抽取模型, 该模型最高的F 值达到91.94%。【结论】通过对食品安全事件实体抽取结果的分析, 在食品这一领域化的语料上, 基于条件随机场进行实体抽取是可行的。
吴毅、刘睿伦、叶文豪、王东波
食品工业
特征知识条件随机场模型实体食品安全事件
吴毅,刘睿伦,叶文豪,王东波.多特征知识下的食品安全事件实体抽取研究[EB/OL].(2017-11-08)[2025-08-17].https://chinaxiv.org/abs/201711.01951.点此复制
评论