基于CPV模型改进的银行业信用风险宏观压力测试研究
he Banking Credit Risk Macro Stress Testing Research Based on Improved CPV Model
本文对CPV模型的残差相关性假设进行了调整,使压力情景生成模型和风险传导模型能分开处理,从而可采用偏最小二乘法对信用风险传导模型进行参数估计,避免了宏观经济因子因多重共线性不能进压力测试系统这个问题。通过似无关回归对情景生成模型参数进行估计,在信用风险传导模型含有宏观经济因子滞后项情况下,使用蒙特卡洛模拟方法进行压力情景生成。实例分析结果表明,采用本文提出的压力测试方法可有效地应用于银行业逆周期管理。
he paper has adjusted residual correlation assumption of the CPV model, then stress scenarios generation model and risk conduction model can be separately handled, thus we can use partial least square method to estimate parameters of credit risk conduction model , avoiding the macroeconomic factors could not be contained in the stress testing system for multicollinearity .The parameters of stress scenarios generation model are estimated through seemly unrelated regression, monte carlo simulation method is used for stress scenarios generation when there exists lagged terms of macroeconomic factor in credit risk conduction model . Case analysis results show that the proposed stress testing method can be effectively applied to banking reverse cycle management.
曹麟、彭建刚
财政、金融
PV模型宏观压力测试多重共线性偏最小二乘法蒙特卡洛模拟
PV modelmacro stress testingmulticollinearitypartial least squaresmonte carlo simulation
曹麟,彭建刚.基于CPV模型改进的银行业信用风险宏观压力测试研究[EB/OL].(2013-01-11)[2025-08-18].http://www.paper.edu.cn/releasepaper/content/201301-574.点此复制
评论