对非线性光纤中(3+1)维耦合非线性薛定谔系统中明孤子和暗孤子的解析研究
nalytic study on the bright and dark solitons for a $(3+1)$-dimensional coupled nonlinearSchr"{o}dinger system in nonlinear optical fibres
光孤子在现代光纤通信中以其极小的能量损耗而被用作信息载体,本文将重点研究由(3+1)维耦合非线性薛定谔系统控制的明孤子和暗孤子的传播性质。在计算机符号计算的帮助下,本文首先用标准Hirota方法由此系统求出明孤子和暗孤子的表达式,并且通过画图分析,得出光折射率对明孤子的振幅和暗孤子的宽度的影响:增大光折射率的值时,明孤子的振幅和暗孤子的宽度也相应增大。
Under investigation in this paper is a $(3+1)$-dimensional coupled nonlinear Schr"{o}dinger system, which describes the dynamics of solitons formed by the pulse envelopes respectively along the orthogonal fast and slow birefringence axes in the bulk Kerr and saturable media in nonlinear optical fibres. Via the symbolic computation and Hirota method, analytic bright one- and dark one-soliton solutions for such a system are obtained. Graphic description of the soliton properties is illustrated. Through the analysis on bright and dark one-soliton properties, it can be found that the bright soliton amplitude and dark soliton width depend on the index of refraction: when the value of the index of refraction increases, bright soliton amplitude become larger and dark soliton width become larger.
王红光
物理学
非线性光纤计算机符号计算(3+1)维耦合非线性薛定谔系统明孤子和暗孤子Hirota方法
Nonlinear optical fibresSymbolic computation(3+1)-dimensional couplednonlinear Schrodinger SystemBright and dark solitonHirota method
王红光.对非线性光纤中(3+1)维耦合非线性薛定谔系统中明孤子和暗孤子的解析研究[EB/OL].(2014-06-24)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201406-366.点此复制
评论