基于作者引用文献关系的潜在研究兴趣主题发现
etecting potential research interest topics using relationship between authors and cited papers
挖掘科研作者的研究兴趣对分析一个领域的主要研究方向及促进科研论文的快速共享具有十分重要的意义。科研作者在学术论文中会引用一些文献,这些文献能够在某种程度上反映出作者的研究兴趣,因此可以尝试根据引用文献关系挖掘潜在的研究兴趣主题。通过扩展LDA(Latent Dirichlet Allocation)模型,提出基于作者引用文献关系的作者-兴趣主题-文献模型,模型中每个作者被分配一个在所有主题上的多项概率分布,而每个主题被分配一个在所有论文上的多项概率分布,进而分析获取隐含的潜在研究兴趣主题。在DBLP(Digital Bibliography & Library Project )文献引用关系数据集上的实验表明,该模型能有效地提取一个领域的主要潜在研究兴趣主题及其所包含的代表性文献,并能挖掘每个作者属于每个研究兴趣主题的分布。
iscovering the authors' research interests is vital for detection of future research topics and fast sharing of science papers in a certain field. When researchers write academic papers, they will cite some literatures, which can reflect the authors' research interests to some extent. Thus, the citation relationship can be used to discovery authors' potential research interest topics. By extending LDA (Latent Dirichlet Allocation) model, this paper proposed an author-interest topic-paper model focused on citation relationship. In this model, each author is associated with multinomial distribution over all the topics, while each topic is associated with multinomial distribution over all the cited literatures, based on which the latent potential research interest topics can be detected. Experiment on citation relationships from DBLP dataset showed that it can discover potential interest topics and representative cited literatures effectively. Besides, an author's interest distribution on different topics can also be described.
冯小东、武森、王佳晔
计算技术、计算机技术
研究兴趣主题发现LDA作者-兴趣主题-文献模型
research interest topics detectionLDAauthor-interest topic-paper model
冯小东,武森,王佳晔.基于作者引用文献关系的潜在研究兴趣主题发现[EB/OL].(2013-10-23)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201310-315.点此复制
评论