基于卷积神经网络的真实图像质量评价方法
uthentic image quality evaluation method based on convolution neural network
现有盲图像质量评价方法主要采用手动提取图像特征和传统的机器学习组合的方法,如支持向量机(SVM)。传统无参考图像质量评价方法通常在图像压缩损失,高斯模糊和白噪声的情境下性能比较好。但不幸的是,他们是不能用于其他的失真类型,更加不适合评价真实失真图像的质量。这可能是由于用传统的机器学习方法通常只利用了浅的单层结构,然后进行了非线性特性转换。因此,这与人类视觉感知图像质量的机制不能相符合。最近几年发展的深层神经网络显示了很强的捕获图像基本属性的能力。这提供了一种新的解决方案来处理BIQA这个问题。我们因此提出一个基于深度学习的图像质量评价方法。?????
Nowadays, blind image quality assessment (BIQA) has been intensively studied with machine learning, such as support vector machine (SVM). Existing BIQA metrics, however, do not perform robust for various kinds of distortion types,particularly for authentic distortions. We believe this problem is because those frequently used traditional machine learning techniques exploit shallow architectures, which only contain one single layer of nonlinear feature transformation, and thus cannot highly mimic the mechanism of human visual perception to image quality. The recent advance of deep neural network (DCNN) can help to solve this problem, since the DCNN is found to better capture the essential attributes of images. We in this paper therefore introduce a new Deep learning based Image Qualityfor blind quality assessment.
刘勇、唐敏
计算技术、计算机技术电子技术应用
信息处理技术盲图像质量评价真实失真深度学习
information processing technologyblind image quality assessmentauthentic distortionsdeeplearning
刘勇,唐敏.基于卷积神经网络的真实图像质量评价方法[EB/OL].(2017-11-16)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201711-71.点此复制
评论