基于BP神经网络的制造过程质量诊断模型研究
Research on Quality Diagnosis Model of Manufacturing Process Based on BP Neural Network
为了解决传统的制造系统在对制造过程状态进行监控时,质量诊断需要依靠质量人员来完成的问题,首先,本文设计基于BP神经网络制造过程质量诊断模型,实现质量控制图的基本模式识别和异常模式特征参数估计。然后,通过蒙特卡罗模拟的质量历史样本数据进行实验并验证模型的可靠性,实验结果表明,基于BP神经网络的制造过程质量诊断模型能够满足现代生产的需求。最后,通过卷烟生产过程实时数据分析,验证本文提出的制造过程质量诊断模型能够有效解决实际生产制造过程中的质量诊断问题。
In order to solve the problem that quality diagnosis needs to be completed by quality personnel when the traditional manufacturing system monitors the state of the manufacturing process.Firstly, this paper designs a quality diagnosis model of manufacturing processbased on BP neural network to realize the basic patterns recognition andabnormal patterns feature parameter estimation of the quality control chart. Then, through Monte Carlo simulation of quality historical sample data to conduct experiments and verify the reliability of the model, the experimental results show that the manufacturing process quality diagnosis model based on BP neural network can meet the needs of modern production. Finally, through the real-time data analysis of the cigarette production process, it is verified that the quality diagnosis model of manufacturing process proposed in this paper can effectively solve the quality diagnosis problems in the actual manufacturing process.
罗阳、谢勇
自动化技术、自动化技术设备
系统工程制造过程质量诊断BP神经网络控制图模式识别参数估计
Systems EngineeringQuality Diagnosis in Manufacturing ProcessBPNeural Networkontrol ChartPatterns RecognitionParameter Estimation
罗阳,谢勇.基于BP神经网络的制造过程质量诊断模型研究[EB/OL].(2021-04-21)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/202104-180.点此复制
评论