基于多维变换的模拟电路故障诊断的神经网络方法
Nonlinear Analog Fault Diagnosis Method Based on Transformation in Multidimensional Spaces and Neural Network
本文提出了一种基于电路双线性函数在多维空间的变换与神经网络相结合的非线性模拟电路故障诊断新方法。该法使用电路的端口特性来解决由于测试节点不足而带来的故障欠缺等问题,采用多维空间的策略变换来使各参数轨迹在复平面或超平面之间的距离加大,从而不仅可以减少各参数故障模式之间的模糊性,提高故障诊断识别率,而且可以很好地解决元件参数容差及测量误差的影响。本文不仅可以用于线性电路单故障、双故障及多故障的诊断,同时,非线性元件经分段线性化(PWL)后,多维变换的方法也可推广应用于非线性电路的诊断。在充分考虑基于多维变换的故障诊断方法的基础上,采用神经网络融合粒子群的方法进行非线性模拟电路故障诊断的系统方法。本文详述了其诊断原理及诊断步骤,并给出了诊断实例。
Based on a bilinear transformation in multidimensional spaces, a neural-network based nonlinear analog fault diagnostic system for actual circuits is proposed. The proposed method uses multiport functions to diagnose the circuits without sufficient accessible nodes. The approach, which is based on transferring parameter loci to multidimensional spaces, makes the distances between the loci in the multidimensional spaces be greater. This fact leads to better fault resolution and robustness against the influence of component tolerances and measurement errors. Besides, the method based on transformation in multidimensional spaces is adopted here to select fault signatures can decrease the ambiguity groups and improve the performance of fault diagnosis. This approach allows diagnosing single, double, and multi-faults in linear circuits. For nonlinear circuit, after the nonlinear component substituting by their piece-wise linear (PWL) models, the method can be used in nonlinear circuit fault dignosis. Under considering the characteristics of the transformation in multidimensional space, the particle swarm optimization (PSO) algorithm-based BP neural network is applied to diagnose faults. Finally, the realization of the proposed strategy is expounded by using two examples.
何怡刚、祝文姬
电子电路
模拟电路神经网络故障诊断粒子群算法双线性变换多维变换
nalog circuitsNeural networkFault diagnosisParticle swarm optimizationBilinear transformationmultidimensional spaces
何怡刚,祝文姬.基于多维变换的模拟电路故障诊断的神经网络方法[EB/OL].(2010-01-14)[2025-08-19].http://www.paper.edu.cn/releasepaper/content/201001-550.点此复制
评论