|国家预印本平台
首页|不变流形生长公式及其在磁约束聚变中的应用

不变流形生长公式及其在磁约束聚变中的应用

Invariant manifold growth formula in cylindrical coordinates and its application for magnetically confined fusion

中文摘要英文摘要

过去的研究中已发现偏滤器上螺旋条带状的热负荷分布,其磁场的结构对如何增大热负荷湿区以降低偏滤器材料的耐热要求至为关键。本文将磁拓扑相关的概念形式化以利用动力系统中的知识。对于一般三维向量场拓扑的理解,环和鞍环上生长出的不变流形至为关键,本文进行有详细分析。Poincaré 映射的 Jacobian 在环上如何演化,文中给出其公式。鞍环的不变流形从?Poincaré 映射的 Jacobian 矩阵的特征向量上长出,它们对混沌场区的确定十分重要,混沌场会在等离子体中造成一定的混合效应。就三维连续时间动力系统,本文推导得到柱坐标中不变流形的生长公式。

spiral ribbon-like pattern of heat deposition has been reported and investigated in the past, of which the field structure is essential to study how to expand the wet area of heat flux to reduce the tolerance-to-heat demand for materials at the divertor in a magnetically confined fusion device. The relevant notions concerning magnetic topology are formalized in this paper to utilize knowledge from dynamical system research. Of great importance to comprehending the topology of general 3D vector fields are cycles and the invariant manifolds grown from saddle cycles, which are analyzed in detail. How the Jacobian of Poincaré map evolves along a cycle is presented. Grown in the directions of the Jacobian eigenvectors at the beginning, the invariant manifolds of saddle cycles are essential to determine the chaotic field regions, which induce a mixing effect inside the plasma. With regard to three-dimensional continuous-time dynamical systems, the governing equation of invariant manifolds in cylindrical coordinates is deduced.

梁云峰、魏文崟

10.12074/202211.00236V2

受控热核反应数学物理学

磁拓扑托卡马克不变流形

magnetic topologytokamakinvariant manifold

梁云峰,魏文崟.不变流形生长公式及其在磁约束聚变中的应用[EB/OL].(2022-11-26)[2025-08-18].https://chinaxiv.org/abs/202211.00236.点此复制

评论