一种具有较好光照鲁棒性的人脸识别方法
Face Recognition Method with Good Illumination Robustness
光照变化是当前影响人脸识别系统性能的一个重要因素。为了有效地克服光照变化的影响,本文提出了一种基于改进局部二值模式算子的人脸识别方法。该方法首先采用邻域均值作为阈值对局部二值模式算子进行改进,以便更好地描述图像的局部纹理,其次为了更好地描述和反映人脸的主要部件特征,同时减少一些模式特征的冗余,我们采用所有的发生模式的99%的模式作为最终的模式,在此基础上得到改进的局部二值模式图像,即ILBP图像,最后采用主元分析法(PCA)对人脸图像进行分类。使用AR和Yale人脸图像的实验表明,本方法能够显著地提高人脸识别率,特别是对含有光照变化的人脸图像。
In the face recognition system, the illumination condition is a very important issue. In order to effectively overcome the influence of illumination change, this paper, an improved local binary pattern method is proposed. Firstly, neighborhood mean is used as a threshold to obtain better description of the local texture. Secondly, in order to better describe and reflect the large and complex parts of a face image, meanwhile reduce some redundant patterns, we use 99% of all occurred patterns of the LBP patterns as the final patterns. The original image is processed based on the final patterns, the ILBP image is obtained. Finally we use principal component analysis (PCA) for classification. Experiments based on AR and Yale face database show that the ILBP image combined with PCA can significantly improve recognition accuracy, especially has strong robustness to illumination.
宋加涛、谢刚、谢克明、梁武民、王亮
计算技术、计算机技术
人脸识别局部二值模式PCA光照
face recognitionlocal binary patternPCAillumination
宋加涛,谢刚,谢克明,梁武民,王亮.一种具有较好光照鲁棒性的人脸识别方法[EB/OL].(2010-11-16)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/201011-366.点此复制
评论