|国家预印本平台
首页|基于新参数记忆梯度法的人工神经网络

基于新参数记忆梯度法的人工神经网络

Neural network based on memorygradient with new parameters

中文摘要英文摘要

人工神经网络近年比较流行的解决非线性问题的研究方法。BP模型是其中应用较为广泛的一种,主要通过前向与反向学习训练,达到模拟样本非线性关系的目的。记忆梯度法充分考虑了前一次梯度信息,是一种稳定的、具有全局收敛性的算法。本文将新参数记忆梯度法引入BP网络中,对BP算法进行了改进,以防止局部振荡、提高其收敛速度及保障其全局收敛性。并以实例进行了分析,结果表明,基于新参数记忆梯度法的BP神经网络具有更好的收敛性与更快的收敛速度。

NN is a prevailing method to solve the non-linear problems in recent years.BP model is the one which is applied widely. BP model simulate the non-linear relationship between the samples by forward-direction and reverse-direction training and learning. Memory gradient method considers the previous gradient,and is a stable and globally convergent algorithm. In this paper,the Memory gradient with new parameters is introduced into BP networkto improve the BP algorithm,to prevent locally oscillating,improving the convergent rate and globale convergence.Numerical example is analyzed .The result show that the BP network based on memory gradient with new parameters has better convergence and quicker convergence rate.

谢刚、胡伟利、李鹏

计算技术、计算机技术自动化基础理论

人工神经网络BP网络记忆梯度法

NNBP networkMemory gradient method

谢刚,胡伟利,李鹏.基于新参数记忆梯度法的人工神经网络[EB/OL].(2008-12-16)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200812-432.点此复制

评论