随机微分方程存在唯一性条件的推广证明
Existence and uniqueness of stochastic differential equations of the extend of conditions to prove
论文对随机微分方程存在唯一性定理采用逐次逼近的证明方法,并在解的收敛环节上补充了极限解在L(2)意义下的收敛证明。再结合随机微分方程存在唯一性定理中线性增长条件,李普希兹条件以及证明过程,论文从初始位置参数,漂移参数和扩散系数以及解的局部延拓 三个方面进行条件的改变,利用随机积分的性质和Kolmogrov不等式等重要不等式完成了三种推广条件下存在唯一性定理的证明。
In this paper,we proved stochastic differential equations of existence and uniqueness theorem by successive approximation method, and the proof of the link in the solution of convergence solutions in the limit of supplementary L (2) under the meaning of convergence. Then we combined the existence theorem of stochastic differential equation of linear growth condition, lipschitz condition and the proof, from the initial position parameter, drift parameters and diffusion coefficient and local continuation three aspects of the changed conditions, using random integration of nature and Kolmogrov inequality important inequation finished three promotion condition of existence and uniqueness theorem is proved.
胡勤
数学
随机积分Gronwall引理Kolmogorov不等式oob不等式
Stochastic IntegralGronwall lemmaKolmogorov inequalityoob inequality
胡勤.随机微分方程存在唯一性条件的推广证明[EB/OL].(2009-07-24)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/200907-531.点此复制
评论