|国家预印本平台
首页|Investigations on Output Parameterizations of Neural Networks for Single Shot 6D Object Pose Estimation

Investigations on Output Parameterizations of Neural Networks for Single Shot 6D Object Pose Estimation

Investigations on Output Parameterizations of Neural Networks for Single Shot 6D Object Pose Estimation

来源:Arxiv_logoArxiv
英文摘要

Single shot approaches have demonstrated tremendous success on various computer vision tasks. Finding good parameterizations for 6D object pose estimation remains an open challenge. In this work, we propose different novel parameterizations for the output of the neural network for single shot 6D object pose estimation. Our learning-based approach achieves state-of-the-art performance on two public benchmark datasets. Furthermore, we demonstrate that the pose estimates can be used for real-world robotic grasping tasks without additional ICP refinement.

Marco F. Huber、Richard Bormann、Markus V?lk、Kilian Kleeberger

计算技术、计算机技术

Marco F. Huber,Richard Bormann,Markus V?lk,Kilian Kleeberger.Investigations on Output Parameterizations of Neural Networks for Single Shot 6D Object Pose Estimation[EB/OL].(2021-04-15)[2025-08-02].https://arxiv.org/abs/2104.07528.点此复制

评论