一类p-Laplacian方程边值问题解的存在性
he positive solutions for a class of differential equations involing P-Laplacian operator
本文考虑下面一维p-Laplacian算子型奇异两点边值问题正解的存在性: 其中h(t)允许在0,1处奇异。本文通过将原问题转化为等价的算子不动点问题进行讨论,通过运用锥压缩拉伸不动点定理得出了上述问题存在一个正解的充分条件。在已有工作启发下,本文处理的是f含有一阶导数项问题,一般文献讨论的多是不含导数项的边值问题,在f满足一定条件下,得出了正解存在定理。
In this paper ,we mainly discuss the positive solutions for one two-point singular p-Laplacian boundary value problem. we introduce the operator equation which is equivalent to our problem, we assume f and h satisfied a series conditions .By using fixed-point theorem on a cone ,we get sufficient conditions for the existence of one positive solution to our problem, the key difficult we encounter is f contains the item .Inspired by former works,when f satisfies certain conditions,we obtain the existence of positive solution theoremn this paper.
陈丙凯、张寅
数学
p-Laplacian算子奇异边值问题锥不动点定理正解
p-laplacian operatorsingular boundary problemsconefixed-point theorempositive solution
陈丙凯,张寅.一类p-Laplacian方程边值问题解的存在性[EB/OL].(2010-09-13)[2025-07-16].http://www.paper.edu.cn/releasepaper/content/201009-302.点此复制
评论