对流占优Burgers方程普遍性随流格式的计算稳定性分析
STABILITY ANALYSIS FOR THE GENERAL FOLLOW-FLOW SCHEME OF NONLINEAR ADVECTION-DOMINATED EQUATION
本文以最简单的非线性对流扩散方程—Burgers方程为模型,着重讨论了一类较普遍的差分格式的计算稳定性问题,用稳定性的启发性分析方法给出了这类格式的稳定性判据,数值试验证明了得到的稳定性判据的确是保证差分格式计算稳定性的必要条件
In this paper,with a one-dimensional nonlinear advection-diffsion equation as the model,giving the stability of the nonlinear computation about a one-dimensional general follow-flow scheme, we take advantage of the method of the Hirt and propose the stability evdence of the difference schemes, numerical experiment proved that the stability criteria which are guaranteed difference scheme is indeed a necessary condition for stability calculation.
包树蕊、侯晓军、杨晓忠
数学力学
计算稳定性,随流格式,启发性分析法,数值试验
computational stability follow-flow scheme the hirt numerical experiments
包树蕊,侯晓军,杨晓忠.对流占优Burgers方程普遍性随流格式的计算稳定性分析[EB/OL].(2007-11-28)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/200711-550.点此复制
评论