|国家预印本平台
首页|基于知识图谱的可视化推荐方法

基于知识图谱的可视化推荐方法

Visualization Recommendation with Knowledge Graph

中文摘要英文摘要

本文针对现有可视化推荐方法在个性化、准确性和可解释性方面的局限,提出了一种创新的基于知识图谱的可视化推荐方法,利用结构化的知识图谱深入理解数据特征与可视化图表类型之间的关系,期望提升可视化推荐的准确性。通过对大规模数据集进行深入的分析和特征提取,构建了一个涵盖数据特征、数据列和可视化图表类型的知识图谱,并采用RotatE嵌入方法进行优化。在公开数据集上进行的测试结果表明,该方法在可视化推荐任务中相比同类方法表现更为出色,推荐的准确度和多样性显著提高,同时增强了推荐过程的可解释性。?????

In this paper, aiming at the limitations of existing visual recommendation methods in terms of personalization, accuracy and interpretability, we propose an innovative knowledge graph-based visualization recommendation method, which utilizes a structured knowledge graph to deeply understand the relationship between data features and chart types, and expects to improve the accuracy of visualization recommendation. Through in-depth analysis and feature extraction on a large-scale corpus, a knowledge graph covering data features, data columns and chart types is constructed and optimized using RotatE embedding learning method to ensure the accuracy and interpretability of recommendation results. Test results conducted on public datasets show that the method performs better than similar methods in the visualization recommendation task, significantly improves the accuracy and diversity of recommendations, enhances the interpretability of recommendation process.

江志航、宋美娜

计算技术、计算机技术

知识工程计算机辅助设计数据可视化可视化推荐知识图谱

Knowledge engineeringomputer-Aided designData visualizationVisualization recommendationKnowledge graph

江志航,宋美娜.基于知识图谱的可视化推荐方法[EB/OL].(2023-12-20)[2025-08-17].http://www.paper.edu.cn/releasepaper/content/202312-47.点此复制

评论