|国家预印本平台
首页|应用于数据降维的Laplacian 特征映射增量学习算法研究

应用于数据降维的Laplacian 特征映射增量学习算法研究

Out-of-sample algorithm of Laplacian Eigenmaps Applied to Dimensionality Reduction

中文摘要英文摘要

传统的非线性流形学习算法已在数据降维处理领域获得了广泛的应用。但是,现有的批处理算法无法对新输入样本进行增量学习。本文针对能最优保持输入数据局部邻近信息的Laplacian特征映射法提出了两种增量学习算法:求导法和子流形分析法。方法应用简单,计算复杂度低,在仿真数据中取得了良好的结果。

he traditional nonlinear manifold learning methods have achieved great success in dimensionality reduction. However, when new samples are observed, the batch methods fail to learn them incrementally. This paper presents out-of-sample extension for Laplacian Eigenmaps, which computes the low-dimensional representation of data set by optimally preserving local neighborhood information in a certain sense. Two different incremental algorithms, the differential method and sub-manifold analysis method, are proposed. The algorithms are easy to be implemented and the computation procedure is simple. Simulation results testify the efficiency and accuracy of the proposed algorithm.

尹峻松、贾鹏、胡德文、黄新生

计算技术、计算机技术

Laplacian 特征映射,流形学习,增量学习,数据降维

Laplacian eigenmaps Manifold learning Incremental learning dimensionality reduction

尹峻松,贾鹏,胡德文,黄新生.应用于数据降维的Laplacian 特征映射增量学习算法研究[EB/OL].(2008-04-09)[2025-08-17].http://www.paper.edu.cn/releasepaper/content/200804-301.点此复制

评论