基于肺叶分割的支气管扩张检测与分类的研究
Study on detection and classification of bronchiectasis based on pulmonary lobe segmentation
支气管扩张是一种常见疾病,可引起肺通气功能障碍且病程长,会造成巨大的社会经济负担。使用深度学习的方法对支气管扩张进行检测与分类,使其在判断准确率与人类医生相当的情况下,快速高效地对大量数据同时进行处理,不仅能够减轻医生负担,还能为医生诊断支气管扩张提供有用的参考,具有很高的价值和意义。图像预处理的好坏是影响深度学习效果的一个重要因素。肺叶分割则是处理肺部CT图像的一个难点与重点。本研究使用基于U-Net的肺叶分割方法处理低剂量CT(LDCT)数据,然后使用深度学习模型Mask R-CNN对支气管扩张进行检测与分类。实验表明,使用肺叶分割的预处理方法可以有效提升深度学习模型对支气管扩张的检测与分类效果。本实验最后训练好的模型对使用了肺叶分割后的LDCT图像中支气管扩张的检测准确率可以达到89.8%,平均分类准确率为91.0%,识别一张图片的速度约为1.5s。
Bronchiectasis is a common disease, which can cause pulmonary ventilation dysfunction. Itis a long course of disease, and will cause huge social and economic burden. Deep learning is used to detect and classify bronchiectasis, so that it can process a large amount of data quickly and efficiently under the condition that the judgment accuracy is similar to that of human doctors. It can not only reduce the burden of doctors, but also provide useful reference for doctors to diagnose bronchiectasis, which has high value and significance. Image preprocessing is an important factor affecting the effect of deep learning. Lung lobe segmentation is a difficult and key point in lung CT image processing. In this study, U-Net based lung lobe segmentation method was used to process low-dose CT (LDCT) data, and then deep learning model Mask R-CNN was used to detect and classify bronchiectasis. The experimental results show that the preprocessing method of lung lobe segmentation can effectively improve the detection and classification of bronchiectasis by deep learning model. At the end of the experiment, the trained model can detect bronchiectasis in LDCT images after pulmonary lobe segmentation with an accuracy of 89.8%, the average classification accuracy is 91.0%, and the speed of recognizing an image is about 1s..
杨吉江、张秦艳、王燕青、雷毅、王青、张经纬、林鑫山、岳宁
医学研究方法基础医学计算技术、计算机技术
支气管扩张深度学习肺叶分割Mask R-CNN
BronchiectasisDeep learningLung lobe segmentationMask R-CNN
杨吉江,张秦艳,王燕青,雷毅,王青,张经纬,林鑫山,岳宁.基于肺叶分割的支气管扩张检测与分类的研究[EB/OL].(2021-12-21)[2025-04-26].http://www.paper.edu.cn/releasepaper/content/202112-67.点此复制
评论