|国家预印本平台
首页|Boosting算法和神经网络相结合的行人检测

Boosting算法和神经网络相结合的行人检测

Pedestrian Detection by Boosting Neural Networks

中文摘要英文摘要

本文提出了一种Boosting算法和神经网络相结合的快速行人检测方法。本文将目标分成不同的矩形矩形,针对每个区域提取梯度方向直方图特征并且训练一个神经网络弱分类器。这些弱分类器利用Gentle Adaboost算法进行组合形成强分类器,同时采用级联结构以加快分类速度。与全局线性支持向量机分类器相比,该方法达到了较好的检测效果,同时有较快的速度。

In this paper, a fast pedestrian detection system by boosting neural network classifiers is built. The object to be detected is represented by a collection of blocks. For each block, the histogram of orientated gradients feature is extracted and a neural network classifier is built as weak hypothesis. Then these hypotheses are selected sequentially by Gentle Adaboost, and the cascade structure is used to speedup the detector. Compared to global linear SVM classifiers, the new method gets better performance on the INRIA pedestrian detection database at a much faster speed.

章毓晋、贾慧星

计算技术、计算机技术

行人检测Gentle Adaboost神经网络梯度方向直方图

Pedestrian DetectionGentle AdaboostNeural NetworkHistograms of Oriented Gradients

章毓晋,贾慧星.Boosting算法和神经网络相结合的行人检测[EB/OL].(2008-12-17)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200812-517.点此复制

评论