基于肤色分割与边缘检测的手势识别技术研究
Hand gesture recognition based on skin color segmentation and edge detection
利用人体肤色在Ycbcr颜色空间中的良好的聚类性,本文提出一种结合了肤色信息与边缘信息的手势分割算法。该算法首先利用在Ycbcr颜色空间中肤色的分布特性从复杂背景中分割出包含人手的区域,并利用边缘检测的方法得到手势轮廓,将两种方法得到的区域相与即可去掉背景中的类肤色区域,分割得到手势的二值图。然后利用归一化的傅里叶描述子对轮廓曲线进行数学建模从而进行特征提取,最后建立BP神经网络训练识别手势。结果表明,针对复杂背景的手势图像,该算法具有较好的分割效果,并且计算复杂度低,计算速度快,具有较好的识别率和实时性。
Because the skin-color has a good character of clustering in the Ycbcr color space, a algorithm for gesture segmentation which combines the information of skin-color and edge is presented.Firstly, the area of hand gesture is segmented from the complex background in the Ycbcr color space based on skin-color,at the same time, getting the edge of the gesture by detecting the image,and then ombining these with and-operation to remove the area which looks like the skin in background to get the binary Image of gesture.Then, use the normalized Fourier descriptors of the contour curve to extracting the feature. Finally,BP neural network was adopted as the classifier to recognize hand gestures. The results showed that, for complex gestures background image, the algorithm performs better, and is of low computational complexity, fast computing speed,high recognition rate and real-time.
丁晓芳、刘晋
电子技术应用
模式识别手势分割肤色边缘特征神经网络
pattern recognitiongesture segmentationcoloredgefeatureneural network
丁晓芳,刘晋.基于肤色分割与边缘检测的手势识别技术研究[EB/OL].(2016-05-31)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201605-1681.点此复制
评论