|国家预印本平台
首页|带有周期性外加扰动的广义高阶非线性薛定谔方程的混沌及控制分析

带有周期性外加扰动的广义高阶非线性薛定谔方程的混沌及控制分析

haos and control of a generalized higher-order nonlinearSchr

中文摘要英文摘要

本文利用数值方法分析了带有周期性外加扰动的广义高阶非线性薛定谔方程的非线性动力学机制。通过相平面分析的研究发现无扰动的高阶非线性薛定谔方程在一定条件下可以同时具有同宿轨道和异宿轨道。并且,在周期性外加扰动影响下,拟周期分岔将会出现并最终演化成混沌。进一步,本文对扰动高阶非线性薛定谔方程关于扰动强度的动力学反映机制展开了数值模拟研究,包括分岔图、最大李亚普诺夫指数以及相轨迹分析,进而证明了扰动影响下混沌现象的存在性问题。最后,应用两种方法对混沌进行了有效控制,从而使得混沌行为最终演化成稳定的拟周期轨道。本研究有助于更好地揭示高阶非线性薛定谔方程的动力学性质。

he nonlinear dynamics of a generalized higher-ordernonlinear Schr"{o}dinger (HNLS) equation with a periodic externalperturbation is investigated numerically. Via the phase planeanalysis, it's found that both the homoclinic orbits andheteroclinic orbits can exist for the unperturbed HNLS equationunder certain conditions. Moreover, under the effect of the periodicexternal perturbation, the quasi-periodic bifurcations arise and canevolve into the chaos. The dynamical responses of the perturbed HNLSequation with regard to the perturbation strength are simulatedthrough the bifurcation diagrams, maximum Lyapunov exponents andphase portraits, which further prove the existence of the chaos forthe HNLS equation with a periodic external perturbation.Furthermore, two methods are used to control the chaos effectively,which can make the chaotic motions evolve into the stablequasi-periodic orbits. Those studies are helpful to reveal thedynamical properties of the HNLS equation.

李敏、王雷、齐凤华

物理学

非线性发展方程周期外加扰动混沌控制

Nonlinear evolution equationPeriodic externalperturbationChaos control

李敏,王雷,齐凤华.带有周期性外加扰动的广义高阶非线性薛定谔方程的混沌及控制分析[EB/OL].(2015-09-01)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/201509-7.点此复制

评论