|国家预印本平台
首页|基于负载特征与注意力的容器负载预测

基于负载特征与注意力的容器负载预测

ontainer Load Prediction Based On Load Characteristics And Attention

中文摘要英文摘要

随着中国互联网的飞速发展,越来越多的应用进行了微服务化改造。微服务容器的负载预测具有十分重要的意义,准确的负载预测有助于完成资源调度、服务监控等任务。本文基于卷积神经网络和具有注意力机制的LSTM编解码器,提出一种可利用多维负载数据进行单负载指标预测的算法。算法通过卷积神经网络捕捉负载指标之间的模式特征,通过集成注意力机制的LSTM编解码器完成模式特征到预测结果的映射。通过在开源的数据集上进行验证,结果表明,本文提出的容器负载预测算法比传统的LSTM等算法具有更高的预测精度。

With the rapid development of China's Internet, more and more applications have been transformed into microservice architectures. Microservice container load prediction is of great significance. Accurate load prediction helps complete tasks such as resource scheduling and service monitoring. Based on the convolutional neural network and the LSTM Encoder-Decoder with attention mechanism, this paper proposes an algorithm that can predict the single load metricusing multivariate load data. The algorithm captures the pattern characteristics between the load metrics through a convolutional neural network, and completes the mapping of the pattern characteristics to the prediction results through the LSTM Encoder-Decoder with the attention mechanism. The verification on the open source dataset shows that the container load prediction algorithm proposed in this paper has higher prediction accuracy than traditional algorithms such as LSTM.

戚琦、曾懿

计算技术、计算机技术

计算机应用技术容器负载预测卷积神经网络长短期记忆网络注意力机制

omputer Application TechnologyContainer Load PredictionConvolutional Neural NetworkLong Short Term MemoryAttention Mechanism

戚琦,曾懿.基于负载特征与注意力的容器负载预测[EB/OL].(2020-02-28)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202002-156.点此复制

评论