电视节目智能分类技术研究
Study on Intelligent TV Program Classification
电视节目智能分类技术用于电视节目的场景分类,本文的研究工作主要包括视频数据预处理、视频分类模型的训练与优化、视频分类模型的测试与结果分析三部分。提出了一种基于NeXtNEW、DBoF和MoE的电视节目智能分类方法。视频数据预处理包括特征提取、场景检测和场景分割。视频分类模型的训练与优化包括基准分类模型的训练、特征调整模型的训练和对比分类模型的训练。视频分类模型的测试包括基准分类模型和对比分类模型的测试,通过比较测试结果中的召回率和准确率,得出了当DBoF模型聚类中心数为4096时对比分类模型优于基准分类模型,并且分类效果较好的结论。
he intelligent TV program classification is used for the classification of TV programs, including video data preprocessing, training and optimization of video classification model, testing the video classification model and analysis results. An intelligent TV program classification method based on NeXtNEW, DBoF and MoE is proposed. Video data preprocessing includes feature extraction, scene detection and scene segmentation. The training and optimization of video classification model include the training of baseline classification model, the training of feature adjustment model and the training of competing classification model. The test of video classification model includes the baseline classification model and the competing classification model. By comparing the recall rate and accuracy in the test results, it is concluded that when the number of clustering centers of DBoF model is 4096, the competing classification model is superior to the baseline classification model, and the classification effect is better.
王鲜叶、赵磊
电视
计算机应用技术电视节目场景分类NeXtNEWBoFMoE
omputer applications technologyTV programScene classificationNeXtNEWDBoFMoE
王鲜叶,赵磊.电视节目智能分类技术研究[EB/OL].(2021-04-29)[2025-08-10].http://www.paper.edu.cn/releasepaper/content/202104-237.点此复制
评论