|国家预印本平台
首页|基于自适应粒子群相关向量机的液体火箭发动机试车台故障检测

基于自适应粒子群相关向量机的液体火箭发动机试车台故障检测

PSO-RVM for Fault Detection of Liquid Rocket Engines Test-bed

中文摘要英文摘要

针对相关向量机的核参数选择问题,本文提出一种自适应粒子群相关向量机方法,利用自适应粒子群的快速收敛特点对相关向量机的核参数进行优化,选择合适的核参数。并且将该方法应用于液体火箭发动机地面试车台的故障检测,通过对氧减压阀出口压力(Pejy)进行仿真和实验,结果表明该方法能有效快速的发现故障,满足了工程应用的可靠性和实时性要求,具有很高的实际应用价值。

Selection of Relevance Vector Machine (RVM) kernel function parameter is one among ineffectively resolved issues, which is first resolved in the literature by adaptive Particle Swarm Optimization (APSO). This paper takes the advantage of APSO dramatically convergence to optimize and select the RVM kernel parameter, thus forming a novel APSO-RVM method. Furthermore, the method is proposed to the fault detection of engines test system. In order to verify the validity of dramatically effectiveness in fault detection, we demonstrate the proposed APSO-RVM approach by performing both simulations and experiments using Oxygen Valve Outlet Pressure (Pejy) database. The experimental results show that APSO-RVM approach can rapidly detect faults effectively and has a high practical value.

宋凯、朱凤宇、王祁

航空航天技术自动化技术、自动化技术设备计算技术、计算机技术

故障检测自适应粒子群相关向量机液体火箭发动机

Fault DetectionRVMAPSOLiquid Rocket Engines

宋凯,朱凤宇,王祁.基于自适应粒子群相关向量机的液体火箭发动机试车台故障检测[EB/OL].(2012-02-16)[2025-08-19].http://www.paper.edu.cn/releasepaper/content/201202-517.点此复制

评论