|国家预印本平台
首页|基于注意力机制的兴趣点预测算法的研究

基于注意力机制的兴趣点预测算法的研究

Research on POI Prediction Algorithm Based on Attention Mechanism

中文摘要英文摘要

随着信息技术的不断发展,互联网上出现了越来越多的基于位置的服务。例如智能交通、物流配送和无人驾驶等。作为位置服务中一项重要的子任务--兴趣点预测,通过分析用户的移动模式,精准的预测用户下一时刻的位置对于改善位置服务,提升用户体验有着举足轻重的意义。然而现有的基于循环神经网络的预测算法处理长序列数据时无法捕捉到长期依赖关系。因此,本文提出了基于注意力机制的兴趣点预测模型LSPAM,使用注意力捕获用户的长短期偏好,能够在不损失局部信息的情况下,同时捕捉全局的上下文信息。此外,还引入了提示向量和长短期融合策略,进一步提高了模型的性能。实验表明,本文提出的方法均优于当前几种较为优秀的算法。

With the continuous development of information technology, more and more location-based services have emerged on the Internet. For example, intelligent transportation, logistics distribution, and unmanned driving. As an important subtask in location services, POI prediction, accurately predicting a user\'s next location by analyzing their movement patterns is crucial for improving location services and enhancing user experience. However, existing prediction algorithms based on recurrent neural networks cannot capture long-term dependencies when processing long sequence data. Therefore, this paper proposes a point-of-interest prediction model LSPAMbased on attention mechanism to capture users\' short- and long-term preferences with attention while capturing global contextual information without losing local information. In addition, prompt vectors and long-short term fusion strategies are introduced to further improve the performance of the model. Experiments show that the proposed method outperforms several current state-of-the-art algorithms.

胡俊、杨谈

计算技术、计算机技术

位置预测注意力机制长短期偏好学习

location predictionattention mechanismlong and short-term preference learning

胡俊,杨谈.基于注意力机制的兴趣点预测算法的研究[EB/OL].(2023-04-07)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/202304-86.点此复制

评论