|国家预印本平台
首页|可换环上矩阵代数的拟导子

可换环上矩阵代数的拟导子

QUASI-DERIVATIONS OF THE ALGEBRA OF MATRICES OVER

中文摘要英文摘要

设R 为任意含幺可换环,Mn(R) 为R 上所有矩阵组成的结合R¡ 代数。对于Mn(R)上线性变换Á,若存在线性变换Á0 使得对任意x; y 2 Mn(R) 均有Á0(xy) = Á(x)y + xÁ(y),则称Á 为Mn(R) 上的拟导子。本文定出了Mn(R) 上任一拟导子的具体形式,对导子的概念进行了推广。

Let R be an arbitrary commutative ring with identity. Denote by Mn(R) the associative R¡algebra over R consisting of all n by n matrices. An invertible linear transformation Á on Mn(R) is called a quasi-derivation of it if there exists an invertible linear transformation Á0 on Mn(R) such that Á0(xy) = Á(x)y + xÁ(y) for 8x; y 2 Mn(R). The aim of this paper is to give an explicit description on the quasi-derivations of Mn(R). Generalizes the notion of derivation to a more general case.

李娜娜

数学

矩阵代数导子拟导子可(交)换环

matrices algebraderivationQuasi-derivationcommutative ring

李娜娜.可换环上矩阵代数的拟导子[EB/OL].(2010-04-08)[2025-08-17].http://www.paper.edu.cn/releasepaper/content/201004-279.点此复制

评论