高维数据的惩罚复合分位数回归
Penalized Composite Quantile Regression in High Dimensions
在不同的科学领域中, 经常会遇到厚尾的高维数据. 此时经典的最小二乘回归的结果将变的很差. 本文章考虑模型假设为线性模型时, 模型回归系数估计问题. 在真实模型中非零系数个数随着样本量慢慢发散的假设下, 考虑将带惩罚的复合分位数应用到回归系数的估计上. 其中惩罚项部分考虑了带非随机性的权重和带随机性的权重.在一定的条件下证明了该回归系数估计具有相合性和渐进正态性. 文章最后在多种误差假设下, 选取了$Lasso$、$SCAD$、$R-Lasso$ 与本文章中的 $CR-Lasso$ 比较, 误差重尾时, $CR-Lasso$ 对非零系数的选择要优于其它三种方法.
In various areas of science, heavy-tailed high-dimensional data are commonly encountered. At this point, the classical least squares regression results will become very poor. This article consider the problem of estimating regression coefficient of the linear model. Considering the application of the composite quantile of punishment to estimate of regression coefficients when the real model number as the sample size spread slowly. Among them part considers the penalty with the non-random weight and the random weight. Under certain conditions show that the coefficient of regression estimate has consistency and asymptotic normality. Finally under a variety of error distribution, compare $CR - Lasso $ with $SCAD $, $R - Lasso $ and $Lasso$, $CR - Lasso$ choice of non-zero coefficient is superior to the other three methods when the error distribution is heavy-tailed.
胡涛、李玉杰
数学
分位数复合分位数回归LASSOSCAD高维数据
Quantileomposite quantile regressionLASSOSCADHigh dimension data
胡涛,李玉杰.高维数据的惩罚复合分位数回归[EB/OL].(2014-05-19)[2025-04-30].http://www.paper.edu.cn/releasepaper/content/201405-314.点此复制
评论