|国家预印本平台
首页|一个基于特征向量的语义角色标注

一个基于特征向量的语义角色标注

Semantic Role Labeling based on Feature Vector

中文摘要英文摘要

语义角色标注是目前自然语言处理的一项研究热点。本文描述了一个基于特征向量的语义角色标注系统,该系统以单一句法分析树作为输入。整个标注过程分为三步:首先预处理,过滤掉极不可能是角色的成分,然后进行角色识别和分类,最后进行后处理,包括处理嵌套情况及对中心语义角色去重处理。本文在优化组合已有特征的基础上,根据语法、句型以及词语搭配,制定了新的有效的特征。系统基于CoNLL-2005 Shared Task开发集和WSJ测试集展开实验,分别获得的F1值为77.54%和78.75%,是目前已知的基于单一句法分析结果进行语义角色标注取得的最好性能,这表明了新特征的有效性及健壮性。

Semantic role labeling is a hot research in natural language processing. This paper described a feature-based semantic role labeling system. There are three steps in the process of semantic role labeling. It firstly identifies constituents that represent semantic arguments, then independently classifies constituents known to be semantic arguments into the specific categories, and finally in the post-processing step, deals with overlap arguments and constituents labeled with some core-arguments. Besides the features presented in other work, the paper extracts new features according to knowledge of grammar, pattern and collocation. The best SRL system achieves F1 value 77.54% and 78.75% on the development and WSJ test set respectively based on CoNLL-2005 Shared Task. As far as we know, it is the best result based on single syntactic parsers based on the corpus. The result also shows the effectiveness and robustness of the new extracted features.

钱培德、李军辉、周国栋、王红玲

计算技术、计算机技术

语义角色标注语法驱动特征句型特征搭配特征

semantic role labelinggrammar-driven featurepattern featurecollocation feature

钱培德,李军辉,周国栋,王红玲.一个基于特征向量的语义角色标注[EB/OL].(2008-12-10)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/200812-319.点此复制

评论