基于模糊积分的集成支持向量机的商业银行信用风险评估
Integrated Support Vector Machines Based on Fuzzy Integral to Research the Credit Risk of Commercial Banks
在商业银行信用风险评价指标体系的基础上,建立了基于模糊积分的集成支持向量机(ISVM)的商业银行信用风险评估模型。由于ISVM能够使用小样本捕获特征空间的几何特征并抽取出最优解,因此对于商业银行的信用风险评估问题,使用ISVM方法构建的分类机的性能比单一支持向量机、基于投票方式的集成支持向量机和模糊神经网络的方法构建的分类机性能要好。本文同时考察了取不同参数值时ISVM模型性能的变化。该模型具有九个输入因子,一个衡量商业银行信用风险的输出因子,研究结果表明基于模糊积分的集成支持向量机的分类准确性明显好于其它几种方法。
commercial bank credit risk assessment model based on Integrated Support Vector Machine (ISVM) which based on fuzzy integral is established through using the credit assessment index system. Since SVM can capture geometric characteristics of feature space and capable of extracting the optimal solution with the small training set size, the classifier of ISVM approach outperforms voting SVM, single SVM, fuzzy nerve network to the problem of commercial bank credit risk assessment. This model has nine input factors and one output factor. The effect of the variability in performance with respect to various values of parameters in ISVM is also examined. The results demonstrate that the accuracy and generalization performance of ISVM is better than others approach.
王栋、吴冲
财政、金融计算技术、计算机技术
商业银行信用风险集成支持向量机模糊积分
Commercial BankCredit Risk AssessmentIntegrated Support Vector Machine (ISVM)Fuzzy Integral
王栋,吴冲.基于模糊积分的集成支持向量机的商业银行信用风险评估[EB/OL].(2007-06-12)[2025-08-02].http://www.paper.edu.cn/releasepaper/content/200706-241.点此复制
评论