|国家预印本平台
首页|稀疏表示多模态生物特征识别的一般框架

稀疏表示多模态生物特征识别的一般框架

Frameworks for Multimodal Biometric using Sparse Representation

中文摘要英文摘要

近年来,稀疏表示分类器被广泛用于各模式分类问题中,表现出了优异的性能。本文将介绍稀疏表示用于多模态生物特征识别的三种一般框架。第一种框架基于匹配层融合,称为MSRC_s。MRSC_s首先分别对每一种模式的特征进行稀疏表示,然后以稀疏表示误差作为匹配系数进行多模态融合并识别。后两种框架则是基于特征层融合,分别为MSRC_f1和MSRC_f2。两者的不同之处在于MSRC_f1采用传统的特征融合方法,直接融合所有模式特征以获得唯一的多模态特征向量,而MSRC_f2隐式地融合多种特征于一种迭代的联合稀疏编码过程中。在实验中,以基于人脸与人耳的多模态识别为例评估这三种多模态识别方法。结果表明本文所提方法均极大的优于采用普通分类器的多模态识别。另外,在所有的测试当中MSRC_s都取得了最好的识别结果,这应该是得益于其保障各个模式稀疏表示的独立性。

his paper will introduce three frameworks of two fusion levels for multimodal biometric using sparse representation based classification (SRC), which has been successfully used in many classification tasks recently. The first framework is multimodal SRC at match score level (MSRC_s), in which feature of each modality is sparsely coded independently, and then their representation fidelities are used as match scores for multimodal classification. The other two frameworks are of multimodal SRC at feature level, namely MSRC_f1 and MSRC_f2, where features of all modalities are first fused and then classified by using SRC. The difference between them is that MSRC_f1 fuses the features to form a unique multimodal feature vector, while MSRC_f2 implicitly combines the features in an iterative joint sparse coding process. As a typical application, the fusion of face and ear for human identification is investigated by using the three frameworks. Many results demonstrate that the proposed multimodal methods are significantly better than the multimodal recognition using common classifiers. Among the SRC based methods, MSRC_s gets the top recognition accuracy in almost all the test items, which might benefit from allowing sparse coding independence for different modalities.

黄蓉刚、杨梦龙、黄增喜、刘怡光

生物工程学计算技术、计算机技术

多模态生物特征识别稀疏表示匹配层特征层人脸与人耳

Multimodal biometricSparse RepresentationMatch score levelFeature levelFace and ear

黄蓉刚,杨梦龙,黄增喜,刘怡光.稀疏表示多模态生物特征识别的一般框架[EB/OL].(2013-01-09)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201301-432.点此复制

评论