|国家预印本平台
首页|基于Feature warping和RASTA滤波的GMM-UBM说话人确认

基于Feature warping和RASTA滤波的GMM-UBM说话人确认

Speaker Verification based-on GMM-UBM with Feature Warping and RASTA

中文摘要英文摘要

在说话人识别的应用中,能够从语音中提取到说话人特有的且对于噪声或者不同的信道具有鲁棒作用的信息是非常有必要的。虽然GMM-UBM(高斯混合-通用背景模型)在文本无关的说话人识别领域已经被证实是一种很有效的方法,但是当存在信道不匹配,加性噪声以及由于手持传感器带来的其他影响时,短时语音特征将被这些不利因素影响,系统的识别性能也将会大大降低。因此,本文采取了一系列措施来降低这些影响。本文利用特征弯曲来弥补通道变化带来的影响,利用RASTA滤波降低加性噪声或卷积噪声的影响。实验证明,此方法在存在上述不利条件下的环境下对于提高说话人识别的鲁棒性是有效的。

In speaker recognition application, there is a need to extract information from speech that is speaker specific and robust to noise and various channel. Though the GMM-UBM (Gaussian Mixture Model-Universal Background Model) system has proven to be very effective for text-independent recognition tasks, when there exists channel mismatch, additive noise and nonlinear effects due to handset transducers, the short-term distribution of the speech features can be distorted by these adverse effects, the performance of the system degrades. In this paper, some efforts has been done to minimize the frailty, Feature warping has been used to compensate for channel variations and RASTA filters have also been used to alleviate the convolutional and additive noise. The Experiments show that this technique is a suitable method to enhance speaker recognition robustness under adverse conditions.

张黛、刘建国

通信

说话人确认RASTA特征弯折GMM-UBMMFCC

Speaker VerificationRASTAFeature warpingGMM-UBMMFCC

张黛,刘建国.基于Feature warping和RASTA滤波的GMM-UBM说话人确认[EB/OL].(2016-04-14)[2025-06-14].http://www.paper.edu.cn/releasepaper/content/201604-165.点此复制

评论