|国家预印本平台
首页|基于遗传算法的子网络生物标记优化方法

基于遗传算法的子网络生物标记优化方法

Optimizing Subnetwork Markers Based on Genetic Algorithm

中文摘要英文摘要

通过结合基因表达谱与蛋白质相互作用网络,人们在乳腺癌转移分类预测问题上取得了显著成效。然而,作为基于网络方法的主要步骤之一,子网络乳腺癌转移预测标记的有效识别问题仍然是一个巨大的挑战。现有的典型识别方法是贪婪搜索算法,但其给出的解可能不是全局最优子网络标记,从而削弱了学习机器的预测能力。文章设计了一个基于遗传算法优化乳腺癌转移子网络分类标记的方法,该方法不仅可以找出具有最优鉴别分数的子网络乳腺癌转移预测标记,并且使用这些标记作为特征和3种常见的分类方法(Logistic 回归、支持向量机和随机森林算法)所建立的分类器具有更好的分类预测性能。通过对比各种分类方法,我们认为,经过遗传算法进行特征优化后采用随机森林算法建立的分类器对乳腺癌转移数据的识别率和预测率最精确,并且具有很好的推广作用,可以对为未知类别的乳腺癌转移数据进行较好的判别。

It has shown remarkable success in the prediction of breast cancer metastases based on the combination of gene expression profiles and protein-protein interaction networks. As an important step of network-based methods, the problem of effectively identifying predictive subnetwork markers remains a great challenge. Existing methods typically use greedy search algorithms, which may not find out the optimal subnetwork markers and accordingly impair the performance of the learning machines. In this paper, we propose a genetic algorithm to improve the subnetwork markers identified by an existing greedy search method. We demonstrate that the discriminative power of the optimized subnetwork markers are significantly higher than the original subnetwork markers, and we can get higher classification performance of the learning machines when using the optimized subnetworks as predictive features via 3 popular machine learning approaches (logistic regression, support vector machine and random forest). According to the comparison of different classification approaches, random forest algorithm with the optimized subnetwork markers shows the highest classification results among all the methods compared, as well as good reproducibility of the optimized sub-networks for better identifying the unknown breast cancer metastases data.

吴佳欣、江瑞

生物科学研究方法、生物科学研究技术基础医学肿瘤学

生物信息基因表达谱蛋白质相互作用网络子网络生物标记遗传算法

Bioinformaticsgene expression profileprotein-protein interaction networksubnetwork markergenetic algorithm.

吴佳欣,江瑞.基于遗传算法的子网络生物标记优化方法[EB/OL].(2010-09-16)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/201009-357.点此复制

评论