基于R语言的混合型聚类算法的研究与实现
Research and Implementation of Hybrid Clustering Algorithms Based on the R language
随着信息技术的飞速发展,大数据时代已经来临,对数据的分析处理成为研究的重点,数据挖掘更是成为了重中之重,被广泛研究。目前,对单一的数据挖掘算法研究已经比较成熟,应用技术也比较多样,但随着业务的繁琐以及数据的复杂,急需在实际应用中对算法进行更加灵活的应用与配合。本文旨在研究聚类算法的基础上,将基于k-Means的划分算法以及聚合型的层次算法优化后再进行融合,以达到优势互补,提高算法效率的目的。最后通过实验仿真,证实本文算法的有效性以及可行性。
With the rapid development of information technology, the era of big data has arrived, analysis of the data has become the focus of research, data mining is to become a top priority,and has been extensively studied. Currently, a single data mining algorithm is relatively mature, the application of technology is also more diverse, but with the cumbersome and complex data traffic, more flexible application and cooperation. is much needed in the practical application of the algorithm. This paper aims to study the clustering algorithm, optimizing the partitioning algorithm and hierarchical algorithm based on aggregation, then merging them, in order to achieve complementary advantages, improving the algorithm efficiency. Finally, simulation experiments confirm the effectiveness and feasibility of the proposed algorithm.
赵晶玲、陈晓
计算技术、计算机技术
数据挖掘划分算法层次算法R语言
data miningpartitioning algorithmhierarchical algorithmR language
赵晶玲,陈晓.基于R语言的混合型聚类算法的研究与实现[EB/OL].(2014-12-29)[2025-08-21].http://www.paper.edu.cn/releasepaper/content/201412-869.点此复制
评论