|国家预印本平台
首页|Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias

Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias

Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias

来源:Arxiv_logoArxiv
英文摘要

We prove the main rules of causal calculus (also called do-calculus) for i/o structural causal models (ioSCMs), a generalization of a recently proposed general class of non-/linear structural causal models that allow for cycles, latent confounders and arbitrary probability distributions. We also generalize adjustment criteria and formulas from the acyclic setting to the general one (i.e. ioSCMs). Such criteria then allow to estimate (conditional) causal effects from observational data that was (partially) gathered under selection bias and cycles. This generalizes the backdoor criterion, the selection-backdoor criterion and extensions of these to arbitrary ioSCMs. Together, our results thus enable causal reasoning in the presence of cycles, latent confounders and selection bias. Finally, we extend the ID algorithm for the identification of causal effects to ioSCMs.

Patrick Forr¨|、Joris M. Mooij

自然科学研究方法系统科学、系统技术数学

Patrick Forr¨|,Joris M. Mooij.Causal Calculus in the Presence of Cycles, Latent Confounders and Selection Bias[EB/OL].(2019-01-02)[2025-08-02].https://arxiv.org/abs/1901.00433.点此复制

评论