|国家预印本平台
首页|The generalized Ramsey number $f(n, 5, 8) = \frac 67 n + o(n)$

The generalized Ramsey number $f(n, 5, 8) = \frac 67 n + o(n)$

The generalized Ramsey number $f(n, 5, 8) = \frac 67 n + o(n)$

来源:Arxiv_logoArxiv
英文摘要

A $(p, q)$-coloring of $K_n$ is a coloring of the edges of $K_n$ such that every $p$-clique has at least $q$ distinct colors among its edges. The generalized Ramsey number $f(n, p, q)$ is the minimum number of colors such that $K_n$ has a $(p, q)$-coloring. Gomez-Leos, Heath, Parker, Schweider and Zerbib recently proved $f(n, 5, 8) \ge \frac 67 (n-1)$. Here we prove an asymptotically matching upper bound.

Patrick Bennett、Ryan Cushman、Andrzej Dudek

数学

Patrick Bennett,Ryan Cushman,Andrzej Dudek.The generalized Ramsey number $f(n, 5, 8) = \frac 67 n + o(n)$[EB/OL].(2025-07-17)[2025-08-04].https://arxiv.org/abs/2408.01535.点此复制

评论