基于胶囊网络和注意力的小样本脑肿瘤分类方法
Few Sample Brain Tumor Classification Method Based on Capsule Network and Attention Module
脑肿瘤分类在医学诊断领域具有重要的研究价值,然而由于医学图像数据获取成本高、样本数目有限,传统的卷积神经网络在小样本数据集上提取目标特征的能力受到限制,导致准确率不尽如人意。为解决这一问题,本研究提出了一种结合注意力机制和胶囊网络的分类模型。该模型利用胶囊网络中的多维向量神经元来更全面地表示目标特征。同时,考虑到小样本情况下目标特征信息的不足,引入了注意力机制,以提高神经网络的学习效率。通过学习不同特征的重要程度,该机制引导分类网络集中关注对分类结果具有显著贡献的特征,减弱对分类结果影响较小的特征,从而提升模型的分类准确率。实验结果针对所选脑肿瘤数据集表明,本算法相较于传统的胶囊网络算法具有更高的准确率。
he classification of brain tumors holds significant research value in the field of medical diagnostics. However, due to the high acquisition cost of medical imaging data and the limited number of samples, the traditional convolutional neural networks (CNNs) encounter limitations in extracting target features from small sample datasets, resulting in suboptimal accuracy. To address this issue, this study proposes a classification model that integrates an attention mechanism and capsule networks. The model leverages multidimensional vector neurons within the capsule network to comprehensively represent target features. Simultaneously, recognizing the insufficient information on target features in small sample scenarios, an attention mechanism is introduced to enhance the learning efficiency of the neural network. By learning the importance of different features, this mechanism guides the classification network to focus on features that significantly contribute to the classification results, while diminishing the impact of less influential features, thereby enhancing the model\'s classification accuracy. Experimental results conducted on the selected brain tumor dataset indicate that this algorithm, in comparison to traditional capsule network algorithms, achieves a higher level of accuracy.
郑致远、彭扬
肿瘤学神经病学、精神病学医学研究方法
人工智能脑肿瘤分类胶囊网络注意力机制小样本学习?????
rtificial IntelligenceBrain Tumor ClassificationCapsule Networkttention MechanismFew-shot Learning
郑致远,彭扬.基于胶囊网络和注意力的小样本脑肿瘤分类方法[EB/OL].(2024-03-06)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/202403-81.点此复制
评论