|国家预印本平台
首页|SGM-Net:一种基于语义指导的抠图网络

SGM-Net:一种基于语义指导的抠图网络

SGM-Net: Semantic Guided Matting Net

中文摘要英文摘要

人像抠图是指从自然图像中将人体部位,包括头发、帽子和眼镜等人体细节信息高质量地提取出来,这项技术在电影行业的图像合成和视觉效果方面发挥着至关重要的作用。在没有绿幕的情况下,现有的抠图方法需要额外输入(如Trimap、背景图像等)的帮助,或者使用网络结构复杂、计算成本高的模型,这都为人像抠图在实际中的应用带来了极大的困难。为解决此类问题,现有的部分方法(如MODNet)采用基于分割结果图的多分支模型,但这些方法仅采用分割结果作为指导信息,并不能充分利用图像中的特征。因此,本文提出了一个生成前景概率图像的模块,加入到MODNet网络中得到基于语义指导的抠图网络SGM-Net(SemanticGuidedMattingNet),在仅使用一张输入图像的情况下完成人像抠图。经实验表明,SGM-Net相较于多分支模型,在客观评价指标和主管视觉感受上都有了明显提升。

Human matting refers to extracting human parts from natural images with high quality, including human detail information such as hair, glasses, hat, etc. This technology plays an essential role in image synthesis and visual effects in the film industry. When the green screen is not available, the existing human matting methods need the help of additional inputs (such as trimap, background image, etc.), or the model with high computational cost and complex network structure, which brings great difficulties to the application of human matting in practice. To alleviate such problems, most existing methods (such as MODNet) use multi-branches to pave the way for matting through segmentation, but these methods do not make full use of the image features and only utilize the prediction results of the network as guidance information. Therefore, we propose a module to generate foreground probability map and add it to MODNet to obtain Semantic Guided Matting Net (SGM-Net).Under the condition of only one image, we can realize the human matting task. Experiments show that, compared with the multi-branch model, the objective evaluation index and supervisor visual perception of SGM-Net are significantly improved.

孙文锋

计算技术、计算机技术

计算机应用技术人像抠图语义分割lpha蒙版

omputer Application TechnologyHumanMattingSemantic SegmentationAlpha Matte

孙文锋.SGM-Net:一种基于语义指导的抠图网络[EB/OL].(2023-04-17)[2025-08-04].http://www.paper.edu.cn/releasepaper/content/202304-259.点此复制

评论