基于奇异性指数的BPSK信号细微特征分析
Fine Characteristic Analysis of BPSK Signal based on Lipschitz Exponent
由于不同电台的个体差异,BPSK信号的相位跳变过程的波形是不同的,本文使用奇异性指数来定量描述相位跳变波形的变化特征,利用小波变换计算相位跳变过程的奇异性指数(Lipschitz指数),分析了由滤波器所造成的相位跳变过程波形变化在奇异性指数上的反映,并以此作为BPSK信号的细微特征,采用BP神经网络进行个体分类识别,计算机仿真实验结果证实了本文方法的有效性。
Because of the differences of hardware between individual communication transmitters, the waveform of process of phase shifte of BPSK signal is different. This paper used Lipschitz exponent to quantificationally characterize waveform variations of BPSK signal based on wavelet transform.According to simulation, we presented the waveform variations of phase shift process, resulting from the different filters, were difrectly reflected on Lipschitz exponent, and used the Lipschitz exponents of process of phase shift as a fine characteristic of BPSK signal. At last, the results of classification and recognition based on BP neural network prove this method is useful.
魏平、申东方、任春辉
通信无线通信
细微特征小波变换奇异性指数BP神经网络
fine characteristic wavlet trasform singularity exponent BP neural network
魏平,申东方,任春辉.基于奇异性指数的BPSK信号细微特征分析[EB/OL].(2007-07-11)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200707-198.点此复制
评论