|国家预印本平台
首页|噪声环境下的鲁棒性说话人识别系统研究

噪声环境下的鲁棒性说话人识别系统研究

Robust speaker recognition system in noisy environment

中文摘要英文摘要

在实际应用中,噪声或信道干扰导致说话人识别( SR) 识别性能急剧下降,针对该问题,本文提出了一种维纳滤波和倒谱均值归一化(CMN)作为语音信号前端处理,以MFCC声道特征及其一阶二阶差分作为特征分别进行高斯混合模型(GMM)训练,再对其融合的方法来提高说话人识别系统的鲁棒性。实验结果表明,维纳滤波和倒谱均值归一化能够有效地消除噪声带来的影响,而MFCC参数混合建模能够更好地区分说话人,使得噪声环境下系统能够具备较高的鲁棒性,综合性能得到很大的提高。

In practical applications, noise or channel interference resulted in great degradation in the performance of Speaker Recognition (SR) system,to solve this problem, we proposed a system design which use Wiener filter and cepstral mean normalization (CMN) in the front-end of the SR system. Regard MFCC and first&second order MFCC as different features of voice,use the Gaussian mixture model (GMM) train them separately and combined the final score to identify the speaker. The experimental results show that the Wiener filter and cepstral mean normalizationcan effectively weaked the impact of noise, hybrid modeling of the MFCC parameters can help distinguish the speakers better and increase the robustness of the system under noisy environment , the overall performance has been greatly improved.

姚强

通信

模式识别与智能系统说话人识别维纳滤波倒谱均值归一化特征混合鲁棒性

Pattern Recognition and Intelligent Systemsspeaker recognitionWiener filtercepstrum mean normalizationfeature fusingrobustness

姚强.噪声环境下的鲁棒性说话人识别系统研究[EB/OL].(2012-05-02)[2025-08-11].http://www.paper.edu.cn/releasepaper/content/201205-26.点此复制

评论