多通道多模式融合LBP特征的纹理相似度计算
纹理相似度计算是大数据分析和数据挖掘的基本手段之一。为现有纹理特征对彩色图像鉴别能力不强的问题,提出了一种改进LBP特征的纹理相似度计算方法。该方法提出了极值模式、求和模式和编码模式三种特征融合模式,对彩色图像的H、S和V三个通道上获取的LBP特征进行融合,得到彩色图像的纹理描述特征。融合操作在邻域像素点LBP计算、中心像素点LBP计算、直方图特征提取三个阶段进行,提高特征鉴别能力。在VisTex纹理数据库上进行纹理相似度计算实验,结果表明该方法的错误接受率、错误拒绝率和等错误率明显低于文献[7,8,9]所述方法。
exture similarity calculation is one of the basic methods of big-data analysis and data mining. For solving the problem that the existing texture features are not strong for color image discrimination, a texture similarity calculation method with improved local binary pattern features is proposed. This method proposes three modes for feature fusion, including extreme mode, addition mode and encoding mode. The LBP features acquired on the three channels of H, S and V of color image are fused by these modes to obtain the texture description of color image. The fusion operation is carried out in three stages including LBP calculation of neighborhood pixels, LBP calculation of central pixels, and histogram feature extraction, to improve the ability of feature discrimination. The results of texture similarity experiments on VisTex texture database show that, the false acceptance rate, flase rejection rate and equal error rate of this method are obviously lower than those of methods described in references [7, 8, 9].
周先春、刘涛、严锡君
计算技术、计算机技术
纹理相似度局部二元模式多通道相似度测度特征融合
周先春,刘涛,严锡君.多通道多模式融合LBP特征的纹理相似度计算[EB/OL].(2018-05-20)[2025-08-25].https://chinaxiv.org/abs/201805.00180.点此复制
评论