|国家预印本平台
首页|基于改进粒子群算法的SVR参数优化选择

基于改进粒子群算法的SVR参数优化选择

Parameters selection of SVR based on modified particle swarm optimization algorithm

中文摘要英文摘要

支持向量机的学习性能和泛化能力取决于其相关参数的选取。支持向量机参数的选取在实际应用中是很复杂的,使用传统优化方法比较难以解决。基于此, 提出一种基于改进粒子群算法的SVR参数选择算法。粒子群优化算法是一种全局搜索方法,在选取SVR参数时, 不必考虑模型的复杂度和变量维数。该改进粒子群算法通过在每一步迭代中加入一定的新粒子而增强了粒子寻优能力,避免陷入局部最优。仿真表明, 该粒子群优化算法是选取SVR参数的有效方法, 由此得到的SVR模型具有良好的学习精度和推广能力。

he study performance and generalization performance of support vector machine depend on a proper setting of its parameters. Parameters selection for support vector machine is very complex in nature and quite hard to solve by conventional optimization techniques. So, a new kind parameter optimization algorithm of SVR is proposed based on modified particle swarm optimization algorithm. Particle swarm optimization is an overall situation reconnaissance method, does not need to consider the model complexity and the variable dimension when select SVR parameters. This modified particle swarm optimization algorithm is modified by added certain new particles at each iterative to broaden search ability, which makes particles free of local optimization. Simulation results show that the modified particle swarm algorithm is valid method for parameters selection of SVR and the PSO-SVR model has superior learning accuracy and generalization performance.

穆朝絮、梁瑞鑫

计算技术、计算机技术

粒子群算法支持向量回归参数优化选择

particle swarm optimization algorithmsupport vector regressionparameter selection

穆朝絮,梁瑞鑫.基于改进粒子群算法的SVR参数优化选择[EB/OL].(2009-02-24)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/200902-1299.点此复制

评论