一类含p(x)-Laplacian的非齐次Neumann问题正解的多重性
Multiplicity of Positive Solutions for a Class of Inhomogeneous Neumann problems involving the p(x)-Laplacian
我们研究如下形式含p(x)-Laplacian的非齐次Neumann边值问题正解的存在性和多重性: begin{equation*} left{ begin{array}{c} -divleft( leftvert nabla urightvert ^{p(x)-2}nabla uright) +lambda leftvert urightvert ^{p(x)-2}u=f(x,u)quad text{ in }Omega leftvert nabla urightvert ^{p(x)-2}frac{partial u}{partial eta } =varphi text{ on }partial Omega , end{array} right. end{equation*} 其中,$Omega$是$mathbf{R}^{N}$中的有界光滑区域;$pin C^{1}(overline{Omega })$;$p(x)>1$ 对 $xin overline{Omega }$;$varphi in C^{0,gamma }(partial Omega )$ 关于 $gamma in (0,1)$; $varphi geq 0 $ 并且 $varphi notequiv 0$ 在 $partial Omega$. 利用上下解方法和变分方法, 在对 $f$ 作适当的假设下, 我们证明了: 存在$lambda _{ast }>0$ 使得当$lambda >lambda_{ast }$时, 问题有至少两个正解; 当$lambda =lambda_{ast }$时, 问题至少有一个正解; 当$lambda <lambda _{\\\\\\\\\\\\\\\\ast }$时, 问题没有正解. 为了证明上述结果, 我们对Neumann问题建立了一个特殊的强比较原理.
We study the existence and multiplicity of positive solutions for the inhomogeneous Neumann boundary value problems involving the $p(x)$-Laplacian of the form begin{equation*} left{ begin{array}{c} -divleft( leftvert nabla urightvert ^{p(x)-2}nabla uright) +lambda leftvert urightvert ^{p(x)-2}u=f(x,u)quad text{ in }Omega leftvert nabla urightvert ^{p(x)-2}frac{partial u}{partial eta } =varphi text{ on }partial Omega , end{array} right. end{equation*} where $Omega $ is a bounded smooth domain in $mathbf{R}^{N}$, $pin C^{1}(overline{Omega })$ and $p(x)>1$ for $xin overline{Omega }$, $varphi in C^{0,gamma }(partial Omega )$ with $gamma in (0,1)$, $varphi geq 0 $ and $varphi notequiv 0$ on $partial Omega$. Using the sub-supersolution method and the variational method, under appropriate assumptions on $f$, we prove that, there exists $lambda _{ast }>0$ such that the problem has at least two positive solutions if $lambda >lambda_{ast }$, has at least one positive solution if $lambda =lambda_{ast }$, and has no positive solution if $lambda <lambda _{ast }$. To prove the result we establish a special strong comparison principle for the Neumann problems.
邓绍高、范先令
数学
p(x)-Laplacian 方程Neumann 问题正解上下解方法变分法
$p(x)$-Laplacian equationNeumann problempositive solutionsub-supersolution methodvariational method
邓绍高,范先令.一类含p(x)-Laplacian的非齐次Neumann问题正解的多重性[EB/OL].(2007-02-13)[2025-08-03].http://www.paper.edu.cn/releasepaper/content/200702-158.点此复制
评论