|国家预印本平台
首页|一种基于混合相似度的协同过滤算法

一种基于混合相似度的协同过滤算法

collaborative filtering algorithm based on hybrid similarity

中文摘要英文摘要

协同过滤是个性化推荐中使用最广泛的方法之一。该方法中最重要的一步是通过使用评分信息来获得用户之间的相似性,以便系统可以预测用户偏好。但是,面对冷启动和数据稀疏问题,大多数相似性度量预测结果不佳。为了全面和客观地度量用户相似度,本文引入了混合相似性度量模型。该模型将用户相似度分为三部分进行度量进而全面分析用户不同时期的相似度,还通过用户属性相似度和项目相似度作为权重因素来提高相似度的准确性。在两个真实数据集的实验上表明,所提出的方法缓解了冷启动和数据稀疏性问题,并提高了预测的准确性和推荐质量。

ollaborative filtering is one of the most widely used method in personalized recommendations. The most important step of the method is obtaining the similarities among users by using ratings information so that system can predict user preferences. However, most similarity measures are not efficient enough in the face of cold start and data sparsity problem. To measure user similarity comprehensively and objectively, this paper introduces mixed similarity measure model. The model divides the user similarity into three parts to measure and then comprehensively analyzes the user\'s similarity in different periods. It also improves the accuracy of similarity by using user attribute similarity and item similarity as weighting factors. Experimentsshow that the proposed method relieves cold start and data sparsity issues and improves the prediction accuracy and quality.

姚文斌、胡芳燚

计算技术、计算机技术

协同过滤相似度冷启动数据稀疏性

ollaborative filteringsimilarityCold startData sparsity

姚文斌,胡芳燚.一种基于混合相似度的协同过滤算法[EB/OL].(2018-05-22)[2025-08-24].http://www.paper.edu.cn/releasepaper/content/201805-193.点此复制

评论