|国家预印本平台
首页|基于实际双目相机的点云三维重建算法研究

基于实际双目相机的点云三维重建算法研究

Research on Point Cloud Reconstruction Algorithm by Stereo Camera

中文摘要英文摘要

立体视觉是计算机视觉领域的难点之一,通过不同位置的相机拍摄同一目标物体获取到两幅图像,计算其中对应特征点间的视差,得到三维信息。要想使用实际的双目相机进行视觉同步定位与建图(SLAM)的三维重建,需要双目视觉的一系列流程,因此本文设计了基于实际双目相机的稠密点云三维重建算法,主要包括了双目相机的标定、双目图像的校正和双目立体匹配算法、稠密点云三维重建以及点云优化和管理。通过实验结果证明,该算法流程能成功将大基线双目相机应用于实际室内外场景中,对环境进行稠密三维重建,从而在定位的同时提高更为真实的环境信息,验证了提出算法的可实用性及有效性,以提供给机器人或自动驾驶从而方便自动导航。

Stereo vision is one of the difficulties in the field of computer vision. Two images of the target object are obtained by using cameras at different positions, and the parallax between corresponding feature points in the images is calculated to obtain three-dimensional information. A series of processes of stereo vision are required to use the actual stereo camera for the 3D reconstruction of visual simultaneous localization and mapping (SLAM). Therefore, a dense point cloud 3D reconstruction algorithm based on the actual binocular camera is designed in this paper. It mainly includes the calibration of stereo camera, stereo image correction and stereo matching algorithm, dense point cloud 3D reconstruction and point cloud optimization and management. The experimental results show that the proposed algorithm can successfully apply the large baseline stereo camera to the actual indoor and outdoor scenes to conduct dense 3D reconstruction of the environment, so as to improve the real environment information while positioning, and verify the practicability and effectiveness of the proposed algorithm, which can be provided to the robot or automatic driving to facilitate automatic navigation.

王子贤、闫丹凤、赵耀

计算技术、计算机技术电子技术应用

人工智能计算机视觉双目视觉同步定位与建图

artificial intelligencecomputer visionstereo visionsimultaneous localization and mapping

王子贤,闫丹凤,赵耀.基于实际双目相机的点云三维重建算法研究[EB/OL].(2022-03-22)[2025-08-06].http://www.paper.edu.cn/releasepaper/content/202203-309.点此复制

评论