图像特征匹配算法评价框架
Comparative Framework of Image Feature Matching Algorithms
图像特征匹配技术在图像拼接、数字摄影测量等领域有着广泛的应用,因各类应用对其需求的多样化而快速发展,不同的图像特征匹配算法各具特点,有必要对已有算法进行综合比较,针对不同应用进行优化选择。本文对已有图像特征匹配算法论文中所用的特征匹配评价指标进行总结,提出一种图像匹配算法的比较框架,利用标准的图像数据集获取图像特征匹配算法的单项指标,并进行归一化;通过对各项单项指标值进行加权累加获取综合指标值,权值根据应用的背景不同而设定,从而为基于应用的图像特征匹配算法的选择提供参考。本文利用Mikolajczyk和Schmid标准数据集,定量分析SIFT、SURF、BRISK、ORB、FREAK等五种算法的时间效率和对图像旋转变化、模糊变化、光照变化、尺度变化、视角变化等图像变化的稳定性,从而获取每种算法的单项指标值,并以车载移动测量系统拍摄图像进行匹配为例验证该框架的合理性。
Image feature matching technology has a wide application in the image mosaic, digital photogrammetry and other field. Image feature matching algorithm develops rapidly for the diversification of the demand.Differentimage feature matching algorithm has different characteristics, so it is necessary to carry out comprehensive comparison of the existing algorithms, and make the optimal choice according to the different application. Based on the summarization of feature matching evaluation index used in comparing matching algorithms previously, a comparative framework is proposed. Inside the framework, the single index of image feature matching algorithm, with the use of the standard image data, is acquired and normalized. The comprehensive index value is gained by the weighted single index value and the index weight is set according to the different application background. Therefore, this framework can provide reference for selecting the algorithm based on the diversified application. With the utilization of the standard data sets provided by Mikolajczyk and Schmid, quantitative analysis of SIFT, SURF, BRISK, ORB and FREAK, in terms of time efficiency and stability of image transformation of rotation, blur, illumination, scale and visual angle, is carried out, and thus the single index of each algorithm is achieved respectively. Moreover, the rationality of the framework has been illustrated with the example of the image matching of the vehicle-borne mobile measurement system.
索春宝、石波
计算技术、计算机技术遥感技术
图像特征匹配单项指标归一化评价框架
image feature matchingsingle indexnormalizationcomparative framework
索春宝,石波.图像特征匹配算法评价框架[EB/OL].(2014-12-22)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/201412-645.点此复制
评论