粗糙Carleson型极大算子的Lp 有界性
Lp boundedness of Carleson type maximal operators with nonsmooth kernels
Stein 和 Wainger证明了Carleson型极大算子的 Lp 有界性, 其中相函数P(y)是不含线性项的多项式, 奇异核 K 是光滑的.本文将考虑另一类Carleson型极大算子, 其中相函数为P(|y|), P(t)是R中不含线性项的多项式, K(y)=Ω(y)/|y|n, Ω∈H1(Sn-1). 作者用 Stein-Wainger的TT* 方法和Calderon-Zygmund 的旋转方法证明了该类Carleson型极大算子的Lp有界性, 1<p<∞.
Stein and Wainger have proved that Carleson type maximal operators is Lp bounded, where the phase function P(y) is polynomial without linear term and singular kernel K is smooth. In this artical, authors consider another kind of Carleson type maximal operators, where the phase function is P(|y|), P(t) is a polynomial on R without linear term, K(y)=Ω(y)/|y|n, Ω∈H1(Sn-1). They obtain the Lp boundedness for this kind of Carleson type maximal operators by Stein-Wainger's TT* argument and Calderon-Zygmund's rotation method.
刘红海、丁勇
数学
基础数学arleson型极大算子奇异积分算子振荡积分粗糙核
Fundamental MathematicsCarleson type maximal operatorsSingular integralsOscillatory integralsRough kernel
刘红海,丁勇.粗糙Carleson型极大算子的Lp 有界性[EB/OL].(2011-07-19)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/201107-282.点此复制
评论