|国家预印本平台
首页|基于图嵌入和CaGBDT的多模态出行推荐

基于图嵌入和CaGBDT的多模态出行推荐

Multi-modal transportation recommendation based on graph embedding and CaGBDT

中文摘要英文摘要

针对交通出行服务中推荐的方式单一、容易忽略用户出行偏好等问题,借鉴多粒度级联森林(Multi-grained Cascade Forest, gcForest)结构,提出一种级联梯度提升树(Cascade Gradient Boosting Decision Tree, CaGBDT))模型。该模型利用级联结构增加模型的深度,实现特征的深层次表示学习。同时,为了解决样本类别不平衡问题,在模型中添加指标优化层,通过为每个类别搜索一个阈值,对模型的预测结果进行权重修正。此外,CaGBDT模型可以根据用户的出行记录,构建用户出行全局关系图,利用图嵌入方法,自动提取用户出行的空间上下文关系,提高了特征提取的效率。实验结果表明,提出的模型在多模态出行推荐中能够更好的挖掘用户偏好,推荐的准确性和稳定性均有较好的表现。

iming at the problems of single recommended methods in transportation services and easy to ignore user travel preferences, a cascade gradient boosting decision tree is proposed for reference to the multi-grained cascade forest structure. The model uses the cascade structure to increase the depth of the model and realize the deep representation learning of features. At the same time, in order to solve the problem of sample category imbalance, an index optimization layer is added to the model, and the weight of the model\'s prediction results is corrected by searching for a threshold for each category. In addition, the CaGBDT model can construct a user travel global relationship graph based on the user\'s travel record, and use the graph embedding method to automatically extract the spatial context relationship of the user\'s travel, which improves the efficiency of feature extraction. The experimental results show that the proposed model can better mine user preferences in multi-modal travel recommendation, and the accuracy and stability of recommendation have better performance.

曲志坚、孙全明

综合运输计算技术、计算机技术自动化技术、自动化技术设备

交通出行推荐图嵌入特征工程级联森林梯度提升决策树

traffic recommendationgraph embeddingfeature engineeringcascade forestgradient boosting decision tree

曲志坚,孙全明.基于图嵌入和CaGBDT的多模态出行推荐[EB/OL].(2021-01-14)[2025-08-23].http://www.paper.edu.cn/releasepaper/content/202101-29.点此复制

评论