|国家预印本平台
首页|基于密度峰值优化的谱聚类算法

基于密度峰值优化的谱聚类算法

中文摘要英文摘要

针对经典谱聚类算法无法自适应确定聚类数目、以及在处理大数据量的聚类问题时效率不高的问题,提出了一种基于密度峰值优化的谱聚类算法。该方法首先计算数据对象的局部密度,以及每个数据对象与较其他数据对象的最小距离,并依据一定的规则自适应产生初始聚类中心,确定聚类数目;其次,使用Nystr?m抽样来降低特征分解的计算复杂度以达到提高谱聚类算法的效率。实验结果表明,该方法能够准确地得到聚类数目,并且有效提高了聚类的准确率和效率。

o deal with the problem that classical spectral clustering algorithms are unable to determine the number of clusters automatically, and low efficiency in processing large amount of data with. This paper proposes a spectral clustering algorithm based on the optimization of density peak value. The method firstly calculates the local density of data object and the minimum distance between each data object and other data objects. Adaptive clustering algorithm is generated to determine the number of clusters and to optimize the number of clusters according to certain rules. Secondly, adopting Nystr sampling can reduce the time complexity of characteristic decomposition and improve the efficiency of the algorithm. The experimental results show that this method can accurately obtain the number of clusters and effectively improve the accuracy and efficiency of clustering effectively.

薛丽霞、杨娟、胡敏、孙伟、汪荣贵

10.12074/201804.02173V1

计算技术、计算机技术

谱聚类密度峰值密度聚类自适应Nystr?m抽样

薛丽霞,杨娟,胡敏,孙伟,汪荣贵.基于密度峰值优化的谱聚类算法[EB/OL].(2018-04-17)[2025-08-03].https://chinaxiv.org/abs/201804.02173.点此复制

评论