改进的PPF算法实现目标识别
he target recognition realized by improved PPF algorithm
随着激光雷达技术的发展,基于三维点云的目标识别,跟踪等技术正在被广泛研究。本文对传统的PPF算法进行改进,并将其用于目标识别中。对扫描得到的点云图,通过点云预处理提起待识别目标,计算待识别目标的点对特征,并在已构建的哈希表中进行查找,然后利用目标概率代替旋转矩阵输出的方式完成目标识别。通过在仿真场景下进行实验,得到目标识别率随雷达距离变化的曲线图。在雷达距离场景较近时,目标识别率高达到80%以上。由于不同角度下拍摄得到的点云受遮挡情况不一,本文选取了三个角度,并画出对应角度下的目标识别概率曲线。实验结果表明,不同角度对目标识别概率有影响,但不会影响总的识别率。
With the development of lidar technology, target recognition and tracking based on point cloud are being studied widely.In this paper, In this paper, we improve the traditionalPPF algorithm and use it for target recognition.After obtaining point cloud,The target to be identified is lifted by point cloud preprocessing.According to the PPF, we calculate the point-to-point feature of the target to be identified, and search it in the constructed hash table, Use target probability instead of rotation matrix to complete target recognition. Through experiments in a simulation scenario, a graph of the target recognition rate versus distance is finally obtained, when the target is close to the scene,the recognition rate over 80%. Since the point clouds captured at different angles are subject to different occlusions, we select three angles, and draw the target recognition probability curve at the corresponding angles. The experimental results show that different angles affect the probability of target recognition, but not the total recognition rate.
曹洪伟、任超、左勇
雷达
目标识别改进的PPF算法目标概率
arget recognitionImproved PPF algorithmTarget probability
曹洪伟,任超,左勇.改进的PPF算法实现目标识别[EB/OL].(2021-03-04)[2025-08-16].http://www.paper.edu.cn/releasepaper/content/202103-50.点此复制
评论