一个基于迭代局部搜索的区划问题算法
n improved iterative local search algorithm for the regionalization problem
p>区划问题是将特定地理区域划分为若干空间连续的分区,满足分区内差异最小和分区间差异最大这一基本原则,广泛应用于地理、环境、生态、经济、农业、城市等领域。60余年来,学者尝试建立各种区划问题数学模型,设计了一系列的求解算法,包括精确算法、基于聚类的算法、启发式算法和基于树图的算法。针对现有算法计算效率与求解质量难以兼顾这一局限,本文提出了一个基于迭代局部搜索(ILS)的区划问题算法。该算法主要机制包括:通过邻域单元移动改进分区质量;参照中心单元快速计算分区方差提升算法速度;使用扰动机制跳出局部最优状态;更新分区中心点提升分区方案目标值;以及使用群搜索探索更大的解空间;算法各步骤中通过分区修复保持分区空间连续。55个基准案例测试表明:ILS算法求解质量优于ARISEL算法和SKATER算法,计算时间大幅低于ARISEL算法。一个多指标气候分区实验也验证了ILS算法的实用性。本文ILS算法兼顾分区质量和计算效率,并允许一个分区包含多个空间连续且面积较大的区域,具有灵活性和实用性。</p
p>Regionalization is to divide a large geographic area into a number of homogenous and spatially contiguous regions. It has been widely used in fields such as geography, cartography, ecology, environment management, socio-economy, and urban planning. Since the general regionalization problem has been proven to be NP-Hard, various models and solution methods for regionalization have be proposed since 1960s. The regionalization methods can be classified into four categories: exact, clustering-based, heuristic, and tree-based. However, the commonly used regionalization algorithms are difficult to solve the problem in an effective and efficient manner simultaneously. An improved iterative local search algorithm is proposed in this paper for the regionalization problem. There are six key mechanisms in the new algorithm: the search of moving boundary units to improve the current solution; the center-based approach to accelerate the computation of solution objective; the solution perturbation to escape from the state of local optimum; the frequent update of regional centers to reevaluate the solution; the population-based search to explore larger solution space; and the region repair to keep spatially contiguous regions. The regionalization experimentations on 55 benchmark instances show that the proposed algorithms outperforms ARISEL algorithm and SKATER algorithm in terms of sum-squared errors and adjusted Rand index. A case study of the climate regionalization using 60 attributes illustrates that the improved ILS is effective to delineate climate regions that are compatible with the precipitation, temperature and landform patterns.</p
自然地理学环境科学理论环境管理
区划问题迭代局部搜索基准测试案例研究
regionalization problemiterative local searchbenchmark testcase study
.一个基于迭代局部搜索的区划问题算法[EB/OL].(2022-03-29)[2025-08-23].https://chinaxiv.org/abs/202203.00118.点此复制
评论