可压缩Euler-Maxwell方程\稳态解的渐近稳定性
symptotic stability of stationarysolutions to the compressible Euler-Maxwell equations
本文主要考虑了三维空间中背景密度为非常数的可压缩Euler-Maxwell方程。当背景密度在常数附近进行小扰动时,我们证明了稳态解的存在性。如果初始值在稳态解附近进行小扰动时,我们可以证明方程的解收敛到稳态解,并且结合线性化方程解的Lp-Lq估计和时间加权,可以得到解收敛到稳态解的衰减率。
In this paper, we are concerned with the compressible Euler-Maxwellequations with a nonconstant background density (e.g. of ions) inthree dimensional space. There exist stationary solutions when thebackground density is a small perturbation of a positive constantstate. We first show the asymptotic stability of solutions to theCauchy problem near the stationary state provided that the initialperturbation is sufficiently small. Moreover the convergence ratesare obtained by combining the Lp-Lq estimates for thelinearized equations with time-weighted estimate.
朱长江、刘青青
数学物理学
偏微分方程可压缩的Euler-Maxwell方程稳态解渐近稳定性
Partial differential equationCompressible Euler-Maxwell equationsstationarysolutionsasymptotic stability
朱长江,刘青青.可压缩Euler-Maxwell方程\稳态解的渐近稳定性[EB/OL].(2012-12-21)[2025-07-16].http://www.paper.edu.cn/releasepaper/content/201212-631.点此复制
评论